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Cubic bond orientational order in the liquid crystalline blue 
phases 
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t Institut fur Theoretische und Angewandte Physik, Pfaffenwaldring 57, 

70550 Stuttgart, Germany 
1 International Centre of Condensed Matter Physics, Universidade de Brasilia, 

70919 Brasilia, DF Brazil 
9: Jagellonian University, Institute of Physics, Department of Statistical Physics, 

Reymonta 4, Krakow, Poland 

(Received 4 December 1995; in $nu1 form 9 March 1996; uccepted 15 March 1996) 

A thorough numerical analysis of a recently proposed cubic bond orientational model for 
Blue Phase I11 (Longa, L., and Trebin, H.-R., 1993, Phys. Rev. Lett., 71, 2757) is presented. 
In addition to the standard quadrupolar tensor field Qas(r), describing the cubic space groups 
of BPI and BPII, a spatially constant fourth-rank hexadecupolar tensor Bipya of cubic point 
group symmetry is used to describe a cubic bond orientational order. While in BPI and BPII 
both order parameters are present, in BPIII only the hexadecupolar tensor is non-zero. 
Hence, BPIII is viewed as a phase of long-range cubic order. Within this model distinct phase 
diagrams are computed up to four stars of k-vectors, the elements of a star being related by 
the point group symmetry operations. In particular, it is possible to account for some of the 
details found experimentally, such as the dominance of BPI over BPII for high chiralities. If, 
however, the artificial body centred cubic structure 0’ is being made metastable, then BPI 
also vanishes from the phase diagram. 

1. Introduction 
Blue Phases of chiral liquid crystals, also known as 

BPI, BPI1 and BPIII, have puzzled research for more 
than a century now [ 11. While it seems most probable 
that BPI and BPI1 have periodicities of a body-centred 
cubic structure with the space group symmetry Os(14,32) 
and of a simple cubic structure with the space group 
symmetry 02(P4, 32) ,  respectively, the structure of BPIII 
is still a matter of intensive theoretical and experimental 
studies. Though being selective to the handedness of 
circularly polarized light in reflection like the other two 
Blue Phases [ 11, it does not exhibit sharp Bragg peaks; 
but rather a wide reflection band [2] typical of an 
amorphous system. Most probably it also does not 
possess long range periodic order, a conjecture which is 
supported by Grandjean-Can0 measurements [ 31. 

For moderate chiralities all the phase transitions 
between the Blue Phases are first order, with the trans- 
ition enthalpy smaller by two orders of magnitude than 
that between the isotropic phase ( I )  and BPIII. For 
highly chiral liquid crystalline compounds, the transition 
enthalpy I-BPIII decreases with increasing chirality [4] 
and may even vanish at a certain limiting chirality [ S ]  

*Author for correspondence. 

suggesting the presence of an intermediate critical or 
tricritical point. These observations seem to indicate 
that, at least, short range order must be similar in all BPs. 

Though critical fluctuations supporting the existence 
of the (tri-)critical point between BPIII and 1 have not 
been observed so far, the decrease of the latent heat 
down to a non-detectable value [4,5] puts severe restric- 
tions on a hypothetical structure of BPIII. Two possibil- 
ities seem most probable. The first one is that BPIII and 
I phases are of the same macroscopic symmetry and 
approach a common critical point at high chiralities; 
this scenario seems to be favoured by current experi- 
ments [4,5]. The second possibility is that BPIII and I 
phases are of different symmetry with a high-chirality 
tricritical point. It could serve as a very interesting 
alternative to the first case and is not excluded at 
experimental level. 

Modelling the structures of Blue Phases has a long 
history [ 1,6-111. In general the cubic structures of BPI 
and BPI1 emerge correctly from the calculations [12]. 
Also the order of the phase transitions between I, Ch, 
BPI and BPI1 is found to agree with experiment. 
However, neither of the proposed mean field calculations 
explains the structure of BPIII. The cubic O5 structure 
theoretically found in the phase diagram, where normally 
BPIIT is stabilized, has never been observed experiment- 
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244 J. Englert et al. 

ally. Also the other features of the experimental phase 
diagrams such as, for example, a restricted stability 
domain of BPII, remain unexplained. On the contrary, 
the theoretical phase diagram is dominated by BPTT. 
Both a typical experimental phase diagram 131 and the 
best theoretical phase diagram found to date [12] are 
shown in figure 1 .  

Among the proposed models aiming to solve the 
BPIII puzzle, some are of particular interest as they 
indicate that BPIII could be a new form of liquid state 
not seen before. One of them is an icosahedral model 
[6, 71, which assumes that BPI11 is a thermodynamically 
stable icosahedral liquid possessing a quasi-periodic 
icosahedra’l symmetry of the orientational degrees of 
freedom. (Jnfortunately, the calculations show that the 
icosahedral structure cannot account for a (tri-)critical 
point. If the icosahedral liquid were a stable phase, the 
phase transition from I to this structure would always 
be first order. At a theoretical level, to get an icosahedral 
structure as (at least) a metastable state is however not 
excluded. This possibility seems inherent to the 
dc Gennes-Ginzburg~-Landau description of chiral 
liquid crystals r7, 131. 

To summarize, mean-field theories based solely on the 
alignment tensor as an order parameter have not been 
successful in their goal to obtain a generic phase diagram 
with a correct identification of BPIII. This failure gave 
a motivation for seeking another route to explain its 
structure. In this paper we shall extend the standard 
de Gennes-Ginzburg-Landau theory to show that some 
of the features of the experimentally observed phase 
diagrams can be accounted for theoretically using the 
concept of ‘bond order’. A possible interpretation of the 
structure of the BPIII will be given. More specifically, 
in a recent paper [S] we argued that the correct solution 
to the problem of the BPIII structure cannot be obtained 
without taking into account fluctuations of the orienta- 

Figure 1 .  Typical experimental phase diagram as found by 
Yang and Crooker. The best theoretical diagram of Grebel 
et nl. [ 121 is also shown as the inset. 

tional order on a scale exceeding, say, the pitch and that 
of chirality induced correlations for smaller distances. 
The presence of strong fluctuations is observed in BPI 
and BPII in the form of incoherent light scattering 
which breaks geometrical selection rules for Bragg 
peaks [ I ] .  

The proposed scenario C9-111 (to be discussed later) 
implied that, at least, two possibilities for the structure 
of BPI11 could be envisaged. The first possibility yields 
a family of isotropic niodels [ 1, 10, 111 which view BPIII 
as a new type of ’amorphous’ liquid differing from the 
ordinary isotropic liquid by short-range correlations. 
Within these models a critical point between I and BPIII 
is not excluded [lo, 111. Detailed calculations will be 
published elsewhcre. 

The second possibility is known a s  a cubic hond 
orientations/ model [ 8- 101. This model assumes that 
due to strong fluctuations of the tensor field Qap(r ) .  the 
cubic space group symmetries of ordinary cubic bluc 
phase superlattices become reduced to their common 
octahedral factor group O(432) = O,,. Diffraction 
maxima should still be observed, but there arc no 
periodic planes to produce coherent Bragg diffraction, 
which generally agrees with experiments. Such a concept 
has long ago been envisaged by Nelson and Toner for 
atomic crystals [14] but has never been reported in 
three dimensions. The cubic bond model could account 
for a tricritical BPIII I phase transition [ lS] .  

The phase diagrams are usually calculated by minim- 
ization of the free energy functional of the order para- 
meter field in Fourier space. The expansion of the field 
in Fourier components is limited to a finite number of 
sets of wave vectors. The elements of a sct are trans- 
formed mutually by the operations of the point group 
and have the same lengths. Elements of different sets 
generally dilfer in length. We denote these sets by ‘stars’ 
or ‘shells’. They are characterized by representatives 
such as, e.g. [ 1 0 01 and [ 1 1 01 for 0’. 

Two star calculations of the phase diagrams within 
an extended de Gennes-Landau-Ginzburg free energy 
[9] indicated that the b c c structure Os (P432) could be 
removed from the phase diagram, and the bond orienta- 
tional ordered phase could be stabilized in the regime 
of high temperatures. As the calculations of the diagram 
in figure 1 1121 revealed a strong sensitivity to details 
of parametrization of the tensor field, it is a purpose of 
this paper to generalize the previous analysis to four 
star calculations. These will make the analysis consistent 
with the calculations of Grebel et a/. [ 121. 

After introducing the de Gennes-Wilson-Ginzburg- 
Landau theory in $ 2  we shall bc concerned in $ 3  with 
the extended free energy which accounts for bond ori- 
entational order. In 94 we provide a detailed, four star 
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Cubic bond orientutional order in blue phases 245 

analysis of the phase diagrams for Blue Phases that 
follow from such a theory. 

2. I)e Gennes-Ginzburg-Landau free energy 
There are different levels of description for phase 

transitions between liquid crystalline phases. At a micro- 
scopic level with a characteristic length scale of, say, 40 A 
the properties of the system are calculated using statist- 
ical mechanics. The starting point of such calculations 
lies in interactions between the molecules. At a mesos- 
copic level with a characteristic length of 400& the 
concept of order parameters is introduced and the 
observables are calculated using statistical field theory. 
Finally, at a macroscopic level of resolution of 4000A, 
the mesoscopic order parameters are often used as input. 
The mesoscopic and macroscopic scales allow one to 
explain the universal behaviour of the systems, independ- 
ent of details of microscopic interactions. Clearly, all 
three levels of description are closely correlated. 

For the cholesteric phase and for the Blue Phases of 
chiral liquid crystal materials, the characteristic dimen- 
sion associated with the structure is of the order of 
4000 8. Consequently, the mesoscopic level is an appro- 
priate starting point of the description. The order para- 
meters can be identified with the help of macroscopic 
response functions of the bulk material [16] or by 
referring to the angular distribution function A(@, 4) of 
orientational degrees of freedom and by exploiting its 
symmetry properties. In the latter case coefficients of the 
expansion of f i ( O , # )  in powers of the directional unit 
vector 0 = (cos 4 sin 0,sin 4 sin 8, cos 0) serve as order 
parameters: 

1 
4TI 

A(@,&) =f,(t) = --[N(r) + 3D(r)-0 + 5Q(r):(0@0) 

+ 7M(r) i ( 9 0  0 0 0 )  

+ 9B4(r):: (0 0 9 0 0 0 0)  + . . -1. (1) 

Here N, D, Q, . . . . are the irreducible tensors of momenta 
L= 0,1,2,. . . , respectively. For local SO(3)-, D,- or D, 
symmetries, which are relevant for the systems studied, 
the tensors of odd L vanish. The monopole momentum 
( N )  normalizes the distribution f,. Thus the lowest order 
non-trivial field which can be identified with the primary 
order parameter of liquid crystals is the symmetric and 
traceless quadrupolar tensor field Q(r). As already indi- 
cated before, Q(r) can be associated with the anisotropic 
part of the diamagnetic, or dielectric linear susceptibility. 
The position dependence of Q takes into account a 
possibility of non-uniform configurations of the orienta- 
tional degrees of freedom. Later we shall introduce a 
secondary, position-independent tensor order parameter 
of rank four (B4) which can be interpreted as the 

hexadecupolar, non-linear part of the dielectric 
permittivity. 

The degeneracy of the tensor Q(r) is directly related 
to the local symmetry of liquid crystals. For example 
the local, SO( 3)-symmetric (isotropic) state corresponds 
to the case when three eigenvalues of Q(r) are equal. 
Due to the condition of vanishing traces, this symmetry 
yields Q(r) = 0. For the local, D,-symmetric (uniaxial) 
configuration, two out of the three eigenvalues of Q(r) 
are equal. In the case of the general, D,-symmetric 
(biaxial) structure, Q(r) has three different eigenvalues. 

In the statistical field theory the suitable quantity 
describing equilibrium structures is the free energy 9. It 
is defined as a Feynman integral of a Ginzburg-Landau 
functional FdeGL[Q(r), aQ(r)] over all fields Q(r) 

The only restriction on FdeGL is that it must be (a) SO( 3)- 
symmetric and (b) stable against an unlimited growth 
of both Q(r) and aQ(r). The path integral fDQ(r)  is 
defined by cutting the three-dimensional volume occu- 
pied by the system into small cubes and performing 
integration over five fields Qils at each point. 

De Gennes was the first to formulate the Ginzburg- 
Landau free-energy functional FdeGL of liquid crystals as 
an expansion in terms of Q(r) and its derivatives Qas,?. 
Except for the chiral term, the original expansion (which 
we shall refer to as de Gennes-Ginzburg-Landau theory) 
reads [ 171 

F3 = - - d3rTrQ3 "s U 

The chiral term (of coefficient 2 4  in equation (3) is 
responsible for the formation of phases with broken 
chiral symmetry, e.g. cholesteric or the Blue Phases. 

So far there has been little progress in understanding 
the physical implications of the statistical field theory 
(2) [l]. The major complication is the presence of the 
chiral term in FdeGL. Consequently most of the results 
are obtained using the mean-field approximation (MFA) 
to (2). The latter is usually introduced by expanding (3)  
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246 J. Englert 4t ul. 

around the field Q"(r) that minimizes FdeGL. Then 

(4) 
where (. . .) = { {dr, dr,. All functional derivatives on 
the right-hand side of (4)  are evaluated at the solution 
Q(r)=Q"(r). The linear term in the expansion (4)  is 
absent since FdeGL[QG,2QG] is minimal at  Q"(r). The 
leading, zeroeth-order term of this expansion is just the 
MFA free energy. I t  is obtained directly by the substitu- 
tion Q(r) = Q"(r) into equation (3).  The next-to-leading 
terms of (4) are called one-loop, two-loop, etc. approxi- 
mations. The QG(r) configuration is also known as a 
'saddle point' of the Feynman integral (2). 

The field Q(r) = Q"(r) is found in practice by con- 
sidering individually all relevant periodic and quasi- 
periodic structures parametrized in terms of linear 
combinations of plane waves of helicity m 

Q(r) = ~, , , (k)M,(k)ex~ ik - r ( 5 )  
k m 

where 

M,(k) = 6-'"{ 3k@ iC - 1 ) 

M I  , (k )  = + f ( ( ?  fr it?)@k + LO(? iG)$ (6)  

Mk2(  k) = 4 { (? f it?) 0 (i' it?)) 

are the spin L= 2 tensors represented in an orthogonal, 
right-handed local coordinate system ti', i+, k) with k 
playing the role of the z-axis. The reality condition 
Q(r) = [Q(r)]* additionally implies that 

( 7 )  

Assuming the invariance of the expansion ( 5 )  under 
space group symmetries one obtains the well known 
sclection rules, that is all symmetry allowed values of 
wave vectors and helicities entering the summation in 
the formula ( 5 ) .  After identifying them, the MFA free 
encrgy can now be calculated explicitly. In particular, 
the quadratic part reads 

M,i- k) = (- 1 I"( M,(k))* 

c 111 

+ [ ( I  + i c 2 ( 4  - m2)lq2a)  lPm(k)I2, ( 8 )  

where 4 = kn-'I2 determines the length scale of the 
reciprocal lattice, = u: + 172 + PI: (II, being the Miller 
indices) and, finally. (7 = aO(7'- T ' )  is the temperature. 

By minimir,ing F2 with respect to q and tn and in the 
units of energy. length and of Q introduced by Grebe1 
ct d. [ 121 one finally arrives at [7, 121 

FdeGL = F2 + F3 + F4 

where I^ is the absolute value of the wave vector k that 
minimizes the quadratic part of the free energy (9). 

Note that the functional (3)  depends only on  threc 
parameters: the reduced temperature t. the reduced 
chirality K ,  which is proportional to the wave vector of 
the cholesteric phase, and the relative elastic constant 
c2/cI. The remaining two parameters (/?,;I), present in 
(31, are redundant. For FdecL to be positive dcfinite wc 
additionally require that c2/c, > - 312 and ;# > 0. Due to 
the choice of units and due to the prolate-oblate sym- 
metry of FdecL one may always take 

The minimization over the fields Q(r) is thus reduced 
to a minimization over the amplitudes ,pnI(lkl). The most 
dimcult parts of the calculations are the traces over spin 
matrices and the sums over relevant vectors k. Due to 
these limitations, the most advanced calculations done 
so far were restricted to up to four leading stars of thc 
wave vectors and to the in = 2 modes. The latter corre- 
spond t o  the low-lying branch of thc excitation spectrum 
of the quadratic part of the free energy (9). The last 
approximation makes the term proportional to c2/c, 
vanish and. consequently, the only parameters left are t 
and K. Hence, by minimizing FdeCi,. with respect to the 
amplitudes p2(a). a uniuersrd phase diagram is obtained 
[ 121, which is shown as the inset in figure I .  

As already discussed in the previous section, the 
theoretical phase diagram of figure 1 yields an incorrect 
identification of the structurc of BPI1 and cannot 
account . for many trends observed experimentally. 
Hence. chiral liquids cannot be fully understood without 
more advanced calculations that go beyond mcan-field. 
It is believed, however, that the statistical field theory 
as represented by equation (2)  is a correct description 
of BPs. In the next section we shall propose an extension 

= 7 '  = 1 [ 161. 
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Cubic bond orientational order in blue phases 247 

of the de Gennes-Ginzburg-Landau theory that may be 
relevant for the issues discussed. A possible explanation 
of the RPIII structure will also be given. 

3. De Gennes-Ginzburg-Landau free energy in the 
presence of bond order 

Thermal fluctuations, which are not taken into 
account in the mean field analysis, may change the 
theoretical phase diagrams in an essential way. For a 
demonstration, let us consider the so called high chirality 
limit (HCL) (ti+ 0s) of the free energy, equation (2), 
[6,9] (see also [l]), in which fluctuations of the tensor 
field Q become especially important and the mean field 
results certainly do not hold. In this limit the bulk part 
of FdeGLIti2 vanishes and the ground state is determined 
by the quadratic part, F2, of the free energy. It is given 
as an arbitrary linear combination of the states rn = 2 
on the spherical shell Ikl =const. [ 11. Though this 
continuous degeneracy of Q is partly removed for finite 
chiralities by the bulk free energy, it is clear that in the 
presence of thermodynamic fluctuations no periodic or 
quasi-periodic structure should be stable for very high 
chiralities. 

Hence, if we start at very large chiralities, at least two 
possibilities for the structure of BPIII appear likely. One 
possibility is that of another isotropic liquid, modelled 
predominantly by the modes of the shell Ikl z const. 
It -- is characterized by Ikl = const., Q and 
U -  '5 d3x Tr Q' # 0 or, alternatively, by Amicro = 

U ~ ' ~ ~ ~ ~ E , , , Q , ~ ( ~ ) ~ ~ Q ~ , ~  [9] (the last two averages being 
different from their values in the isotropic liquid). Here 
the overline denotes the thermal average over all fields 
Q(rj. The role of the bulk part of FdeCL is to restrict the 
norm of Q. 

In the isotropic model, which certainly is relevant for 
very high chiralities, all symmetry elements of a space 
group are lost due to the strong thermodynamic fluctu- 
ations. But with lowering the chirality, fluctuations 
should become less important and consequently some 
symmetry elements which are common to many space 
groups (like those forming a factor group), may survive. 
For the BPIII structure such symmetry elements show 
up in a long range orientational order while a periodic 
(or a quasi-periodic) ordering is absent. The long range 
orientational order would appear between macro- 
scopically correlated regions in the &(r) space. A 
similar possibility for atomic crystals has been suggested 
by Nelson and Toner [14], Kosterlitz et al. [18] and 
Halperin et al. [191 and is commonly referred to as a 
bond oriented phase. In the bond oriented phase of 
atomic crystals the translational symmetry is lost but 
the system remembers the directions of crystallographic 
axes present in the solid. The phase is obtained in the 
process of defect mediated melting of a low temperature 

crystalline structure. Interestingly, a quasi two-dimen- 
sional structure with these properties has indeed been 
discovered in liquid crystals and is known as a hexatic 
phase [ 191. It arises in the process of defect mediated 
melting of the smectic B phase. If a similar scenario is 
possible in chiral liquid crystals, one would get a new 
type of isotropic liquid with long range three-dimensional 
bond orientational order of octahedral symmetry, which 
is a common factor group of the BPI and BPII structures. 
The bond oriented liquid would be obtained as a result 
of (defect mediated) melting of BPI or BPII cubic, 
dielectric superlattices [9, 1 I]. 

Further implications of the presence of fluctuations 
on the spherical shell of Ikl= const. have been studied 
for a scalar order parameter field by Brazovski et al. 
(see, e.g. [ 131 and references therein). They showed that 
the mean field transition temperature between the iso- 
tropic liquid and a structure of a space group symmetry 
G is depressed. It may also happen that the space group 
symmetry stabilized in the presence of fluctuations is 
different from its mean field counterpart. Such calcula- 
tions for the BPI and BPII structures will be reported 
elsewhere. They, however, leave open the question of the 
structure of BPIII. 

In this section we shall investigate some consequences 
of the presence of cubic bond orientational order on the 
structural stability of the Blue Phases. We start an 
analysis by introducing the relevant bond orientational 
order parameters and the effective free energy. 
Generalizing the results of Nelson and Toner [14] and 
those of Jarii. Cl.51, we introduce a bond orientational 
tensor order parameter field Buppv(r, fi) (which must be a 
tensor of rank, at least, four): 

Buppv(r, fi) = R$;xr, fi) 

= 1 d3x w(x)Qnp(r + x) n2 dn QJr + x + n)w(n), 

( 10) 
U s 

where w(x) is a coarse-graining function. 
As seen from equation (10) the bond orientational 

order accounts for non-local properties of the system. It 
approximates orientational correlations between Q(r) 
and Q(r + fi) along the direction fi by an effective order 
parameter BuppY(r, a). The leading term in B(r, fi), which 
we call the B-tensor, is obtained from the expansion into 
spherical harmonics and into plane waves of equa- 
tion (10) 

= 2) s d'rs d3x s d3y Quo@ + x)QIIY(r + yjw(x)w(y) 

(11) 
It is now very convenient to decompose B into SO(3)- 
irreducible tensors BL of components B$pv.  Only three 
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248 J. Englert ev al. 

tensors, characterized by L= 0, 2 and 4, arc obtained. 
For cubic symmetry, which we analyze here, the only 
irreducible part of B is B4. At experimental level, the 
tensor B4 is associated with the cubic part of the non- 
linear dielectric susceptibility tensor. It is responsible for 
the alignment of BPI and BPII crystals by an electric 
field, as has been shown experimentally by Pieranski 

To gain insight into a possible influence of the @-field 
on the stability of the Blue Phases we formally replace 
the 'microscopic' free energy (2) by an approximate, 
effective free energy functional F[QG,B4] [9] 

et a/ .  [ 201. 

3 [ Q G ( r ) , B 4 ]  = F = -k,Tln DQ(r)h(B4 - B4,m1cro) 

+ Fbond[B41. (12) 
The procedure is justified since all phase transitions 
involving Blue Phases are weakly first order. The equilib- 
rium forms of the tensors Q"(r)  and B4 are, as usual, 
determined by minimizing F. If this formalism is indeed 
applicable to the Blue Phases, the minimization of F 
should yield an order parameter QG(r) non-zero in BPI 
and BPII, but zero in BPIII, while the bond orientational 
order parameter B4 should be non-zero in all Blue 
Phases. We shall see that these general features are 
indeed recovered from the effective free energy (12). 
Furthermore, within the minimal coupling scheme for F 
the BPI11 could, in principle, be uniquely identified with 
a cubic bond ordered structure. 

Besides the FdeGL part of F, already accounted for in 
equation ( 2 ) ,  there are two extra parts in equation ( 121, 
denoted Fcoupl and Fbond. The Fcoupl part represents the 
coupling between the ground state Q"(r) of the space 
group symmetry G and the bond orientational order 
parameter B. Fbond accounts for structures which do not 
show spatial modulation. 

To obtain the minimal coupling form for Fbond: please 
note that the L = 4  irreducible part B4 of the Cartesian 
tensor B is equivalent to a nine-dimensional spherical 
vector order parameter a4 of components L?: (m= 
-4,. . . , 4 )  

4 

B$j,s = C (- l)"Q:M!,,,(B) (13) 
m= - 4  

where M4(ii) are the irreducible basis tensors of spin L = 

4. They are defined with respect to an orthonormal, 
right-handed tripod {B, ~ ii,, ii3 = B)-thc Goldstonc 
mode of Fbond. 

The lowest order, analytically independent and SO( 3) 

symmetric invariants, which enter the expansion of Fbond, 

read [ l S l  
4 

Ii(f24) = c (- 1 ) " s z 3 2 4  ))I (14) 
,n= - 4  

where 

4 

in2 

are the 3j-symbols. Using equations (14) to (17) the 
expression for Fbond takes the following form: 

4/2 ~I 

Fbond = &I:(a4) + 4ii3r:(n4) + $ 1 2c.iI:q04) 
i = O  

= :a,B:p;.6B:flyd + 4 ~ ~ B : p ~ ' s ~ : f l , ~ , , B ~ ~ ~ ~ , , ,  

+ i~4.0(B:gyaB:o;>a)2 + ial,l B:~ydB4dp"B~vpaB~asp. 

(18)  

The minima of Fbond are located in invariant sub- 
spaces of the nine-dimensional space { 04} associated 
with the subgroup G of SO(3) :  

g Q 4 = l - Q 4  b ' g ~ G < S 0 ( 3 )  (19) 

Clearly, the S O ( 3 )  irreducible representation L= 4 
becomes reducible with respect to G < S O ( 3 )  and the 
corresponding basis functions of the invariant subspaces 
are obtained using the projection operator 

where d ,  = 1 is the dimension of the unity representation 
D$)(g) = 1 of the subgroup G, where JGI is the group 
order and D(g) the three-dimensional representation of 
g in the real space. The number of independent basis 
functions yields the dimension of the invariant sub- 
space. JariC showed [ l S ]  that for a minimal coupling 
theory only structures with symmetries corresponding 
to sub-spaces of the lowest dimension can be accessed 
via a phase transition from the isotropic phase. This 
implies that for the order parameter B4 and for the free 
energy (1 8) only threc low symmetry structures arc 
accessible from the isotropic liquid: (i)  an octahedral 0, 
(one-dimensional invariant sub-space), (ii) a uniaxial 
D,h (one-dimensional invariant sub-space) and (iii) a 
D&, (two-dimensional invariant sub-space). 

The lowest order non-trivial terms of the Fcoupl part 
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are found in a similar way. There is only one term of 
the lowest order [9] which reads 

1 A 
FcouPiIQ(r), B4) = - j Bjfpya d3rCQap(r)Q,a(r) 

+ Qay(r)QBa(r) + Qaa(r)Qyp(r)l. 

(21) 

The effective parameters entering equations (18 )  and 
(21) depend on 'bare' parameters of the expansion (9).  
This dependence could, at least theoretically, be found 
from the formula ( 12). An alternative way, which we 
follow in this paper, is to assume some simple temper- 
ature and chirality dependence for these coefficients. The 
only condition that must be fulfilled is that the free 
energy (18) should be stable with respect to an unlimited 
growth of B4. In the next section we shall be concerned 
with an in-depth analysis of the phase diagrams that 
follow from the free energy expansion (12). 

4. Results 
We start our discussion by concentrating on general 

results that are independent of the detailed form of the 
tensor QG(r). First of all the form of the coupling (21) 
has the consequence that the cubic bond orientational 
order parameter B4 is always induced by the periodic 
ground state QG(r), whereas the structure QG(r) is not 
automatically generated by the bond order. The bond 
order can condense before any spatial periodicity of 
QG(r) is established in the system. The corresponding 
structure could be associated with BPIII. If we just 
restrict ourselves to this possibility, by an appropriate 
choice of the coupling constants in (18) and (21), then 
the minimization of the bond part is carried out inde- 
pendently of Fd&L and Fcoupl. The results of such a 
minimization are summarized below. As already argued 
in the previous section the minimal coupling theory (18) 
generates only three bond-ordered structures: (I) the 
octahedral (cubic) oh, (11) the uniaxial D m h  and (111) the 
D ,  that are accessible from the isotropic liquid via a 
phase transition [ 151. The bond-orientational phase 
diagram is dominated by the octahedral structure, which 
can be accessed from the isotropic phase through either 
a jirst-order phase transition or a tricriticul continuous 
transition. The uniaxial phase is accessed only through 
a first-order phase transition. The structure of D4h sym- 
metry can only be accessed through a second-order 
phase transition and requires G2 = 6, = 0, which makes 
it much less probable than Dooh and o h .  Since Dmh and 
Oh symmetries are mutually exclusive in parameter space 
and since Dmh symmetry has not been detected experi- 
mentally in BPs, we conclude that within the concept of 
bond orientational order, the most probable candidate 

for the structure of BPI11 is indeed the one of 0, 
symmetry. From now on we shall exclusively be con- 
cerned with this case. As the symmetries on both sides 
of the phase transition are different, the model cannot 
account for a suggested super-critical conversion of 
BPI11 to the isotropic phase [ S ] .  

Precise equilibrium forms of the tensors QG(r) and B4 
may, as usual, be determined by minimizing F. In order 
to make calculations of the same accuracy as the ones 
carried out by Grebel, Hornreich and Shtrikman [12], 
we take up to four leading stars of wave vectors k for 
cubic space group symmetries. For each star we select 
only m = 2  modes, which correspond to the low-lying 
branch of the excitation spectrum of the quadratic part 
of FdecL [ 121. Clearly, the cross-coupling term (21) 
together with the terms of FdeGL are directly responsible 
for the stabilization of different cubic structures. 

Assuming octahedral symmetry for the cubic bond 
orientational order parameter, B4, equation (20) gives 

After substituting (22) to Fcoupl and Fbond both parts of 
the free energy F simplify considerably lo yield 

Fbund = $a2(t, K 2 ) B ;  - a3B: + a4B:, (23) 
and 

In the last formula 

is the numerical tensor and [UP$] denotes symmetriz- 
ation over indices UP$. For cubic space groups, each of 
the numerical tensors (25) has an octahedral symmetry 
with four-fold symmetry axes parallel to the laboratory 
frame system. The question to be answered first is how 
the local tripod (Goldstone mode) {a1, fi2, ii} is oriented 
with respect to these four-fold axes. We consider two 
possibilities. The first one is to minimize the coupling 
term with respect to the tensor orientation. This is 
certainly a thermodynamically correct procedure and 
can be done exactly with the help of SU(2) Cayleigh- 
Klein parametrization of the tripod. For the cubic space 
groups, the minimum of FGoupl is attained for the tripod 
taken parallel either to the [ loo]  directions or to the 
[ 1 2 21 directions. More specifically, if the numerical 
tensors are exclusively built out of the [no01 vectors 
for IB,  > 0, the minimum generally corresponds to the 
tripod oriented along [ loo]  and for l B O < O  to the 
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250 J. Englert et al. 

tripod oriented along [ 1 2 21. The numerical tensors 
built out of the [ n n O ]  or the [nn(2n)] stars behave in 
the opposite way. If we analyse both cases we arrive at 
simple expressions for the coupling term, (21), which 
for BP1(08), BP1I(O2) and for O5 structures read, 
respectively 

 in {%[~;(41- + c d ( 2 )  + d ( 6 )  + P;(S)II, 

-%"4)[P%4) - $  CI-132) + 1 4 6 )  + p:(8)lll 

~ ~ A B , [ ~ ; ( 1 1 - ~ ~ ~ ~ ( 2 ~ 1 }  

(26) 

Min {dB,[p;( 1)  - i j ~ ; ( 2 ) ] ~  
(27) 

Min { -iB0$[&(2) + &6) + p:(S)], 
(28) 

where the first (second) term under Min (. . + )  corresponds 
to the Goldstone mode parallel to [ l o o ]  ([122]) 
dirccti ons. 

For the cholesteric phase and for iB,>O the vector 
ii of the tripod is oriented along the [ 1001 direction. 
For ELB, < 0 it is degenerate on a cone forming an angle 
of 45 degrees with the [ 1 0 01 direction. For these cases 
the expression for the coupling reads 

%J%+[d(2) + d ( 6 )  + d(s ) ] ) ,  

Min { -AB,[Gp;(O) -t 2 & 2 ) ] , $ m ~ 6 p ; ( o )  + 2p:(2)1/ 

(29) 

As seen from equations (26) to (29) the minimization 
of the total free energy for AB, < 0 may stabilize symmet- 
ries which are not observed experimentally in chiral 
liquid crystals. It is not clear whether this is an artefact 
of the truncation imposed on the expansion (12) or 
whether it is inherent to the model. Hence, as a second 
possibility, we shall discuss the case when the tripod is 
just fixed parallel to the cubic [ 1001 directions, without 
performing the minimization described above. It cer- 
tainly yields results that are consistent with the orienta- 
tion of the tensor B4 found in experiments of Pieranski 
et nl. [201. In both cases we introduce a linear 
dependence of the parameter a,(t. J?) on t and rc2: 

( 3 0 )  a*( t ,  ti") = ii * ( t  - 6 2 )  ~ .i 

Furthermore, as the scale of B, in equation (23) is 
arbitrary, we introduce units in which a4 = 1 .  The 
remaining parameters of the model will either be 
assumed constant or chirality dependent. 

For arbitrary (K, t )  and for fixed values of the material 
parameters. the numerical part of the minimization of 
the free energy over the real amplitudes pm(lkl) of the 
expansion (12) is now done by a combination of the 
steepest descent and the simplex methods. 

Two typical phase diagrams for the case when the 
angle between Q(r) and B4 is minimized according to 
equations (26) to (29) are shown in figures 2 and 3 .  The 

1 
___ 4 0 ,  

t 

0 1 2 3 

K 

Figure 2. Phase diagram for the case where orientation of BJ 
is found from the formulae (26)_to (29). The parameters 
assumed are: ,I = 0,002, G = 1.0, h = 4.0. f = - 1.0, h = c = 
1.0. The phase diagram is very similar to the phase 
diagram of figure 1 of Grebel et ul. The phases indexed 
by 'B' have bond orientational order in the [ 1  121 
direction. 

I 4 0  

I 
0 1 2 3 

K 

Figure 3. Phase diagram for the ca5e whcre orientation of B4 
is found from the formulae (261  to (29). The parameters 
assumed are: ,I = 0.02, ri = 2.0, h = 4-0, f = ~ 1.0, h = L = 

1.0. Note that stabilities of O8 and of O5 are correlatcd. 

diagram of figure 2: obtained for small A, is very similar 
to the diagram of Grebel et nl. [12]. In particular the 
O5 structure is still present. For higher coupling strengths 
(figure 3) the 0' and the Os structures disappear. 

To answer the question-what structure of a space 
group symmetry can transform into the bond ordered 
phase via a phase transition?-we take the purely bond 
ordered phase as a reference and fix the value of i B ,  in 
the other phases. Now we check which phase shows a 
transition to the bond ordered phase for that value of 
dB,. Typical results as function of chirality arc given in 
figure 4. Note that there is no region where O8 shows a 
direct transition to the bond ordered phase. The diagram 
is dominated by a uniaxial nematic phase, obtained from 
the cholesteric phase when p2(o = 2) = 0. 

From figure4 we can conclude that within thc 
approximations (18) and (21) it is not possible to realize 
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0 . 4 )  U 

0 -  
LBO 

- 0 . 4 -  

10 - 

1 
0 -  

I 
0 1 2 3 

K 

Figure 4. Phases with a direct transition to the bond ordered 
phase. U denotes a uniaxial nematic phase obtained from 
the cholesteric free energy as described in the text. 

a direct phase transition between BPI and the bond 
ordered phase and that the O5 structure can only be 
shifted off the diagram for high coupling strengths A (see 
also phase diagrams of figures 2 and 3 ) .  Similar results 
hold true for the phase transition to the isotropic phase. 
Again the O5 structure is stable for small i s  and the BPI 
does not show a direct transition to the isotropic state. 

This behaviour seems universal for the cubic bond 
model. It is further illustrated in figure 5, where we 
present a typical phase diagram in the (A, t )  plane. Again 
BPI (O*) is the first phase to vanish. For higher coupling 
strengths A, the O5 structure is also removed. Note that 
the latter case corresponds to that which we found 
within the two-stars approximation [9]. 

Now we shall discuss the second case when the 
Goldstone mode is made parallel to the [ 1 0 01 direc- 
tions, see figure 6. It is then possible to consider negative 
values of the coupling strength A&. In this case the 
minimization over the Goldstone mode would give 
phases with a 'wrong' orientation of the bond order 
tensor. Interestingly, as shown in figure 7, the stability 

201- ' I 

t I \ / - I 

0 0 . 0 2  
1 o L  
-0.02 

h 

Dependence of the relative strength of the different 
phases on the coupling strength for the case where the 
orienJation of B4 is not fixed to [ 10 01. Parameters: 6 = 
2.0, b = 4.0, f = - 1.0, b = c = 1.0; K = 2.0 fixed. 

Figure 5. 

I 
1 2 3 

K 

Figure 6. Phase diagram for the bond order tensor oriented 
parallel to the [ 1 001 direction. The parameter L is taken 
negative: 1 = -0.01. The remaining parameters are: 2 = 
1.0, h = 1.5, P = 0.0, b = c = 1.0. For small chiralities 
between Oic  and 02 there is a very small region of Oi,,, 
not labelled in the diagram for the sake of clarity. 

2 0  - ' 
I 

t 

- 4 . 0 2  0 0 . 0 2  

h 

Figure 7. Dependence of the relative strength of the phases 
on the coupling strength when the orientFtion of the bond 
order is fixed. Parameters are: d = 2.0, b = 4-0, t" = - 1.0, 
b = c = 1.0; K = 2.0 fixed. 

of BPI against that of BPI1 is now considerably 
enhanced and overall trends agree with what we observe 
experimentally. For even higher coupling strengths, the 
O2 structure is shifted to higher chiralities and finally it 
vanishes. The same trends are also observed for the O5 
structure. 

From the analysis as given (see especially figures 
4, 5, 7), it becomes clear that details of the phase 
diagrams should depend on the temperature and chiral- 
ity variation of the parameters in Fcoupl and Fbond. While 
the temperature dependence is hard to calculate and we- 
are forced to use a simple Landau assumption equa- 
tion (30), the chirality dependence seems to follow 
general rules. 

To see this let us turn again to high chirality limit. As 
already argued before, the quadratic part of the free 
energy is proportional to K' (9), while the cubic and the 
fourth order free energies are of order KO. The B4 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



252 J. Englert et a1 

U 

K 

Figure 8. The tiz model. The parameters are: d =  2.0, 1 = 
-0.002, h = 4-0, C = - 1.0, b = c = 1.0. One can see, that 
0' vanishes for high chiralities in agreement with 
experiment. 

dependent part is then of order K'" where T I  takcs one 
of the values 1. 0, ~ 1, - 2,. . . . As negative values of n 
are inconsistent with the assumption that bond order is 
induced by fluctuations, we are left with n = 1 and n = 

0. The second case has already been studied, while the 
Grst one tells us that all B4-dependent terms should be 
multiplied by the factor K'. The corresponding phase 
diagram is shown in figure 8. 

Now BPII is no longer present for high chiralities, in 
agreement with experimental results. On the other hand 
the O5 is enhanced as compared to the standard cases. 

Finally we shall discuss the bond order structurc of 
the cholesteric phase. The minimization of the bond part 
of the free energy shows that for iB,>O, the D, 
symmetry is indistinguishable from the Oh cubic order. 
For J.Bu < 0, the cubic bond order wins in the cholesteric 
phase. On the other hand, in the cubic Blue Phases the 
bond order tripod is oriented parallel to El221 direc- 
tions, thus reducing the cubic symmetry to tetragonal. 
Neither of these symmetries has been observed experi- 
mentally in Blue Phases in the absence of an external 
field. 

5. Conclusions 
We have calculated phase diagrams of the Blue Phases 

using the recently proposed theory of cubic bond order 
[ 91. We generalized the previous work by including 
more stars of wave vectors k in the expansion of QG(r) 
(two-stars calculations in 191 versus four stars calcula- 
tions here), in order to be consistent with the work by 
Grebe1 et at. [12]. A second motivation of this work 
has been to provide a detailed analysis of the phase 
diagrams. 

An important point made in [12] was that the free 
energy of Blue Phases is extremely sensitive to details of 
parametrization of the Q"(r) field and that four star 

calculations may differ qualitatively from the two star 
ones. Our calculations also support this observation. 

Within the proposed theory the cubic bond order is 
stabilized before any space group symmetry becomes 
relevant. This implies that the cubic bond oriented phase 
is a natural candidate for the structure of BPIII and 
indeed it could be stabilized in this part o f  the phase 
diagram where normally BPIII appears. The calculations 
also preserve the symmetries of BPI and BPII and 
improve the phase diagram, although the limited stability 
of BPII cannot be reproduced. The model may destabil- 
ize the artificial 0' structure, which appears at lower 
temperatures, but unfortunately BPI is also destabilized 
in this case. By fixing the orientation of the B4-tensors 
in the [ 1 0  01 direction and turning to negative A it  is 
possible to enhance the stability of BPI over BPII, in  
agreement with the experiment. However the problem 
of the stable O5 structure is still left open. 

Though currently available experimental data are 
indicating that the isotropic model 14, 51 may be more 
relevant for the structure of BPIII, the situation is not 
fully clear. First of all the field B4 certainly is important 
for a correct description of the Blue Phases. This has 
already been proven by Pieratiski ef nl. [ 201 who showed 
that such an order parameter is necessary to account 
for the orientation of crystals of Blue Phases by a weak 
electric field. The position of a broad selective reflection 
band in BPIII, which is close to the [ loo]  peak of 
BPIT, also seems to be in favour of this suggestion. 
Furthermore, we showed recently [ Z l ]  that the coupling 
between the bond orientational order parameter and the 
alignment tensor field of the cubic ground states allows 
one to account for the anomalous electrostriction 
observed in cubic Blue Phases. 

It seems then, that the cubic bond order is highly 
relevant for the description of the Blue Phases. The 
question to be answered experimentally is whether i t  
can form long range ordering in BPIII or whether it 
only exists locally. Unfortunately at theoretical level a 
direct comparison of the free energies of the isotropic 
model [lo, 111 and of the cubic bond model is not 
possible at present. 

This work was supported in part by the European 
Community under PECO-NIS Grant No. ERBCl 
PDCT940607. 
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